Optimality of a Gradient Bound for Polyhedral Wachspress Coordinates
نویسنده
چکیده
In a recent paper with Gillette and Sukumar an upper bound was derived for the gradients of Wachspress barycentric coordinates in simple convex polyhedra. This bound provides a shape-regularity condition that guarantees the convergence of the associated polyhedral finite element method for second order elliptic problems. In this paper we prove the optimality of the bound using a family of hexahedra that deform a cube into a tetrahedron.
منابع مشابه
Gradient Bounds for Wachspress Coordinates on Polytopes
We derive upper and lower bounds on the gradients of Wachspress coordinates defined over any simple convex d-dimensional polytope P . The bounds are in terms of a single geometric quantity h∗, which denotes the minimum distance between a vertex of P and any hyperplane containing a non-incident face. We prove that the upper bound is sharp for d = 2 and analyze the bounds in the special cases of ...
متن کاملInterpolation error estimates for mean value coordinates over convex polygons
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter on...
متن کاملConvergence of Wachspress coordinates: from polygons to curved domains
Abstract: Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences ...
متن کاملDiscretizing Wachspress kernels is safe
Barycentric coordinates were introduced by Möbius in 1827 as an alternative to Cartesian coordinates. They describe points relative to the vertices of a simplex and are commonly used to express the linear interpolant of data given at these vertices. Generalized barycentric coordinates and kernels extend this idea from simplices to polyhedra and smooth domains. In this paper, we focus on Wachspr...
متن کاملOn the injectivity of Wachspress and mean value mappings between convex polygons
Wachspress and mean value coordinates are two generalizations of triangular barycentric coordinates to convex polygons and have recently been used to construct mappings between polygons, with application to curve deformation and image warping. We show that Wachspress mappings between convex polygons are always injective but that mean value mappings can fail to be so in extreme cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014